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ABSTRACT
This report contains an explanation of an algorithm that, when executed,

will operate on any symmetric "approximate correlation matrix" by iteratively

adjusting the eigenvalues of this matrix. The objective of this algorithm

is to produce a valid, positive definite, correlation matrix. Also a

description of a program (called POSDEF) which implements the algorithm is given.



THiS PAGE LEFT BLANK INTENTIONALLY

ii



I[T.
[TI.

Iv.

V.

VI.

Table of Contents

Introduction

Description of the Algorithm

Important Variations of the Algorithm

Program Description

A. Limitations on the Program

B. Input-Parameter Cards

C. Explanation of Output

D. An Example with Selected Portions of the Output
Deck Setup for POSDEF

Discussion

Bibliography

Appendix A - Listing of the For‘ran Source Deck for POSDEF

11
19
19
20
23
24
34
37
41

42



THIS PAGE LEFT BLANK INTENTIONALLY

iv



I. Introduction

Many modeling situations exist where the assumption of independence
among variables may not be appropriate. Indeed, "real world problems"
exist where dependences or correlations do exist among the variables,
and the design of an experiment investigating these variables should make

use of this "correlation structure."

This dependence structure among the variables is appropriately sum-
marized in a rank correlation matrix. Iman and Davenport (1980) discuss
in some detail the advantages of using correlations, specifically rank
correlations, as a method of inducing dependences among variables.
Therefore, within this report, we assume that the dependence structure

among the variables is adequately summarized in a rank correlation matrix.

In general, when we speak of correlations in this report, we will
mean rank correlations, since it is not always appropriate to "talk
about" a raw correlation. However, it should be pointed out that, if
it is appropriate to define a Pearsonian correlation coefficient between
two variables, then the methods discussed here apply without loss of

generality.

It is extremely important that existing correlation structure be
specified as accurately as possible. If the modeler is fortunate, he
can estimate this correlation matrix from data, and hence, the resulting

estimated correlation matrix is either positive definite or positive
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semi-definite. However, the modeler may find that no data are available,
and he is faced with the task of assigning values to these correlation
coefficients by whatever methods he can assemble. Under such conditions,
it is not unusual for the modeler to use a "sophisticated guess" for the
value of a correlation coefficient. Furthermore, the modeler seldom can
"estimate" the entire correlation structure simultaneously and is compelled
to provide a collection of pair-wise correlation coefficients. That is,
the modeler specifies this correlation matrix by setting the diagonal
elements equal to +1.0 and each off diagonal element equal to some number
between -1.0 and +1.0, that he feels best describes the dependence between

those two variables.

Such a collection of pair-wise correlation coefficients does not
a "correlation matrix" make! Indeed, Mother Nature does not always have
a charitable character, and it is not too surprising that such "corre-
lation matrices" are not positive definite. Therefore, the modeler
must deal with the problem that he cannot assign values indiscriminately
to the off-diagonal elements without regard for the total correlation

structure.

Such an example is the case of the multivariate k-dimensional normal
distribution. Let I, be the correlation matrix of this distribution
such that all off-diagonal elements are equal to p (the diagonal elements

are, of course, equal to +1.0). Then it can be shown that

- F_%—T <p <1,
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That is, as k becomes large, then there can be no large negative correlations.

The intent of this report is to present an algorithm (and a program)
that will take the collection of pair-wise rank correlations (in the
sequel, called the "approximate correlation matrix") and iteratively
adjust this matrix until it is positive definite (note that the approx-

imate correlation matrix is symmetric).

The algorithm qiven in this report is based on the premise that an
approximate correlation matrix that is constructed by the method described
above will have the following structure. Some of the eigenvalues will be
positive. In fact, if the modeler has been careful in the selection of
the pairwise correlations, taking into consideration the total correlation
structure, then all of these eigenvalues will be positive; and hence the
correlation matrix is positive definite. However, it may be possible for
some of the eigenvalues to be zero or negative. If there are negative
eigenvalues present and if one or more of those negative eigenvalues are
relatively large in absolute value (say a value 1, 2 or 3) , then we say

that this matrix is illconditioned with respect to this algorithm.

We have investigated several examples of this type of approximate
correlation matrix, and have noted the following additional patterns.
The number of negative eigenvalues was relatively small as compared to
the dimension of the matrix. Also the values ol these negative eigen-
values were very near zero. In addition, some of the positive eigenvalues

were very near Zero.

WWe feel that this structure that we have observed in these examples
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is related to the multicollinearity problem that is common in regression
analysis. That is, as the dimension of the matrix (the number of variables)
increases, then the associated correlation matrix is more likely to be
near singular. The present problem is made more complicated by the fact

that some negative eigenvalues are also present.

[f the eigenvalues that are negative are few in number and small in
absolute value, then it should be possible to adjust them so that the
initial matrix is transformed into a positive definite matrix (all eigen-
values nositive), subject to the constraint that the values of the correla-
tion coefficients in the new matrix are very close to the values in the
initial approximate correlation matrix. While we present no theorems in
this report indicating the conditions necessary and/or sufficient under
which this algorithm will be valid, our experience in working with this
type of matrix indicates that it will converge (i.e., we have not encountered

any examples where it failed to converge.)

Likewise, our investigations of the several examples that we considered
indicate that this iterative adjustment scheme produces small changes
in the values of the correlation coefficients in the initial approximate
correlation matrix. This is due to the fact that, for this type of
matrix, small changes in the eigenvalues produce small changes in the

entries of the matrix.

In Section II, we describe the algorithm that is used in the program
POSDEF in detail. However, there are some very important variations to

this algorithm that merit our attention. These are discussed in section
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II1. A description of the program POSDEF is given in section IV, and an
example of the deck setup for using PCSDEF is in section V. The final

section contains a discussion.
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TT. Description of the Algorithm
Let C be an n x n symmetric, non-singular matrix such that the ele-

ments of C satisfy the following:

cji =1 i=1,2,...n

and -1 <cj5 <1 for i #j.

Then it is well known that there exists a matrix Z and a diagonal matrix

D, each of dimension n x n such that (see Graybill, 1961)

CZ = ZD.

The columns of Z are the respective eigenvectors of the matrix C and the

elements of D are the eigenvalues. That is,

F)‘l 1
A2
A3

An

and we assume, without loss of generality, that X1 < xp < «voo < X pe

Since Z is an orthogonal matrix, we have the following result.



CZZ‘ = IDZ”
C = IDZ”
n
C=1LXxy1Ziliy

th

Where Zi is the i column of Z.

Now suppose that Xy < A2 < .... < X, k < n are all negative,
but smail in absolute value. The first step in the algorithm is to change
each of these negative eigenvalues to a small positive number that we will
denote by €. The idea is to make all of the eigenvalues positive, and
hence, the new matrix to be calculated should be positive definite,
or at least have fewer negative eigenvalues than it had previously.
However, we do not wish to change the values of the individual elements
of g anymore than we have to. Therefore we choose a value for e that is
very small, namely € = 0.001. Likewise, we choose not to change the

eiqenvectors, to minimize the effect on the matrix C.

The second step in the algorithm is to examine the eigenvalues
Al € Ak42 € ovee < X2k and change these values, if necessary,

by the following procedure.

eifki<e
Aj* = for i =k +1, ...., 2k.

Aj if A5 > e
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That is, if A; where k + 1 < i < 2k is smaller than ¢ = 0.001, then
we increase its value to .001. If it is larger than e, then we leave
Ai unchanged. This portion of the algorithm improves the operating
characteristics of the overall iteration scheme in the examples that

we considered. This is discussed in more detail in Section III.

Now a new matrix can be calculated using the new eigenvalues dis-

cussed above and is defined as follows:

e Zi L;7 + g Ai* 23 Zi© o+ ; i Z5 237,
T i=k+l T i=2k+1 -

[ 3]
*
1
— o
0\

Recall that the original matrix 9 had diagonal elements equal to
+1. This will not be true of the matrix E*. In general, the diagonal
elements of g* will be slightly greater than one, and in fact, some of the
off-diagonal elements of 9* may be greater than one, depending upon the

initial values within the matrix C.

Our objective is to produce a positive definite correlation matrix;
therefore, some scaling of the elements of 9* must be done in order to
make it conform to the definition of a correlation matrix. The procedure
used here is to simply replace each of the diagonal elements of 9* by +1
and leave the off-diagonal elements unchanged. The result is a symmetric
matrix with diagonal elements equal to positive one and off-diagonal elements
approximately equal to those in 9, the original matrix.. We denote this

new matrix by C1 (indicating the end product of one cycle in the iteration

process).
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If 91 is positive definite then the process is complete and no
further adjustment is needed. If the matrix 91 is not positive defi-
nite, then the entire process is repeated using the new matrix El in
place of the original matrix 9. The end product of the second cycle
of the iteration process is denoted by 92. If 92 is positive definite,
then the process is complete. If 92 is not positive definite then the
entire process is repeated with a third cycle. This iteration process
is executed as many times as necessary, until the end product is a

positive definite matrix.

A disclaimer is in order. We do not know whether or not this
algorithm will always converge to a positive definite matrix. As stated
in a previous secticn, we have no theorems that indicate when it will
converge and/or when it will fail. However, we have used this algorithm
on many approximate correlation matrices and it has never failed to

converge to a positive definite matrix.

Given that the algorithm does converge to a positive definite matrix
(i.e., ail of the eigenvalues are positive), then it would appear that
there is a possibility of one or more of the off-diagonal elements having
an absolute value larger than 1. The following theorem demonstrates that
this is impossible.
Theorem. Given that the algorithm converges to a positive definite matrix
A (of dimension nxn) then |pjj] < 1 for all i # j and i, j = 1,2,...,n
where Pij is the (ij)th element of A.

Proof: Assume pjj is an arbitrary but fixed element of A such that i # j.

Furthermore, assume Ipijl > 1. The matrix A can be transformed
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into a matrix B by elementary row and column interchanges so

that b1 = b1 = pij = 0ji-

Ej E; AEy” Ej’ =

B

-

1

Pij

bn1

That is

Pii -

1

where E; and Ej are the appropriately defined nonsingular

matrices that accomplish the row and column interchanges.

Note

that the matrices A and B have identical eigenvalues (Graybill,

1961, Theorem 1.28, p.4).

Further note that the matrix B is not

positive definite, since (1 - p;;%) < 0 (Graybill, 1961, Theorem

1.23, p. 3-4).

is zero or negative.
of the eigenvalues of the matrix A are positive.

leij] <1 for all i # j.

Therefore, at least one of the eigenvalues of B

But this contradicts the fact that all

Therefore,

Hence, if the algorithm converges, then the matrix produced will

indeed be a positive definite correlation matrix.

in general, this matrix still will be very nearly singular.

The user should note that,

Likewise,

our experience has shown that the changes in the values of the elements

of the original matrix will be small (the reader is referred to Table 1

for some examples).

that we set at the outset.

In conclusion, the algorithm meets the objectives
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[II. Important Variations of the Algorithm

There are essentially two important steps in this adjusting
algorithm. They are:
(1) adjust the values of the eigenvalues X1, A2,..., A2k
associated with the matrix Cj, i=20,1,2,...
(2) scale the diagonal and off-diagonal elements of the matrix

Ci*, i = 0,1’2,010
See Section II for the respective definitions of Cj and Ci*.

Several different schemes for accomplishing (1) were investigated
before deciding to use the particu1ar scheme described in section II.

A1l of these were motivated by the following discussion.

Recall that we are assuming A1, A2, ..., Ak are all negative
afand small in absolute value. Any such adjustment scheme must change these
to positive values. However, we do wish to minimize the effect on the
elements of the original matrix, 91. Therefore, it seems reasonable to
adjust Ag+l € Ak+2 € eeoe < A2k accordingly to compensate for
changing X1 < X2 < .... < Ax. The objective is to minimize the

net effect on the original matrix Cj.

Since A1 is the smallest eigenvalue, we arbitrarily pair )\
with Aoy, the largest eigenvalue among the eigenvalues considered.
Likewise pair Ao with App_1 etc., and finally pair Xy with Aypyg.

Consider the pair (A1, Apk). Recal! that we will replace i
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with € and now wish to change Agg to a value, say u, such

that
M OZ1 Ly7 o+ Ak Lok Lak” = e 11 117 4 u Lok Zpk”

However, in general, this is impossible as no such value of u exists that
satisfies all of these equations. So to obtain some "overall effect,"
we can sum these equations to form one equation in one unknown. Pre-
multiplying the above equation by g’ and post-multiplying by f’ where

J is a vector of all ones, yields

A (97 §1)2 * Ap(J” Ezk)z = e(J” ?1)2 +u(Jd” §2k)2

~

Solving for u, we have

<
Y

(A] - € R + Ap (3.1)

where

R = (97 2)%/(37 2p,)? (3.2)
Examination of equation 3.1 indicates that the essence of the adjust-

ment to Apk is to decrease its value by some appropriate amount.

Therefore, rather than using only equation 3.2 for the definition of R, we

investigated many different ways of finding a suitable value of R including

several obvious values such as zero and one.
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Of course, it should be obvious that the total scheme of adjusting

these eigenvalues would be accomplished on each pair of eigenvalues,

(A1, A2k)s (A2, A2k-1)s +evs (Aks Ak#1)-

Note that any choice of R # 0 may produce a negative value for u
(see equation 3.1), and hence this scheme would replace a positive eigen-
value with a regative number. This is obviously unacceptable, so we

incorporated the following check into the algorithm.
IF(u.LT.€e) u=ce (3.3)

Hence, if R = 0 and statement 3.3 is included in the ai _jorithm, the

net effect is to replace those eigenvalues, among the set (Xp41,

Ak+2, «ovs A2k), that are less than e with the value of €. On the
surface, this may seem strange to leave statement 3.3 in the program
when R = 0. Especially, since the eigenvalues Ayg4+1, ..., Ak should

be left unchanged, whenever R = 0 {according to the equation 3.1). But
empirical investigations indicated that leaving statement 3.3 in the
algorithm whenever R = 0 slightly improved the convergence characteris-
tics of this iterative algorithm. That is, the algorithm converged in
slightly fewer iterations whenever statement 3.3 remained in the

algorithm.

At the same time we investigated the effects of statement 3.3 being
included or excluded from the program, we were investigating many non-

zero values of R. Also we investigated several techniques of "estimating"
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R from the eigenvectors Z;, i = 1,2,...,2k. However, none of these
produced any significant improvement in the algorithm over the choice

R = 0.

In conclusion, the algorithm as stated in Section II amounts to

setting R = 0 and including statement 3.3 in the prograsm.

As stated at the beginning of this section, the second important
step of this algorithm is to scale the elements of the matrix
Ci*, i =0,1,2, .... . We tried five different methods of scaling this

matrix and outline these in the following paragraphs.

Method A

The diagonal elements of the matrix are set equal to 1. No other

changes are made.

Method B

The diagonal elements of the matrix are set equal to 1. Since some
of the off-diagonal elements may be greater than or equal to one or less
than or equal to minus one, it would seem that these elements should be
scaled also. These off-diagonal elements are set equal to +.9999 and

-.9999 respectively.

Method C

Each element in a row is divided by the square root of the diagonal
element of that row. Likewise, ear“ element in a column is divided by the

square root of the diagonal element of that column. That is,
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r(i,j) replaced by r(i,Jj)
r(1,1) * /r(J,3)

where r(i,j) is the (i,j)tP element of the matrix under consideration.
Note that this method gquarantees that the diagonal elements will all be
equal to 1. However, this does not insure that the off-diagonal elements

will be between minus one and plus one.

Method D

Essentially, this method is the same as method C with the following
exception. If a row (column) does not have any off-diagonal elements
outside the interval (-1,1), then the division process described in
method C is not accomplished. However, some of the diagonal elements
may still be greater than 1 or less than 1. Therefore, we follow the
needed divisions described above, by setting all of the diagonal elements

equal to 1.

Method E

This method is the same as method D with the additional modification
that whenever you do divide a row (column) by the square root the diagonal
element of that row (column), you subtract 0.05 from the diagonal element
before you take its square root. For example, suppose r(4,4) = 1.0785
and the division process is called for. Then every element in the fourth
row and fourth column is divided by v1.0285. Then, as in method D,

every diagonal element is set equal to 1.
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These different methods of scaling the matrix produced some interest-
ing results. For example, method C always converged in exactly one
iteration on every exarple that we tested. However, method C alsc pro-
duced the greatest change in the "correlations" in the original matrix

C; (see Table 1). For this reason, we decided not to use method C as the

scaling scheme.

Several examples of approximate correlation matrices were tested
using the algorithm with all combinations of the eigenvalue adjustments,
the five scaling schemes, and with or without statement 3.3. One such
matrix is given as an example in Figure 1. Within this matrix we selected
two elements, namely p12 = .9000 an pi5,14 = .9999 and have summarized

the effect of the iteration procedure on these two elements in Table 1.

As stated earlier, we investigated many techniques for selecting
a value for R, but could find no value of R that offered any significant
improvement over the choice R = 0. In Table 1, we present the two values

R =0and R = 1.

Further investigation of the examples, whenever R = 0, indicated that
the scaling scheme A seems to produce the smallest changes in the values
within the original matrix. This is illustrated with the two cases given

in Table 1.

Finally our investigations indicate that, whenever R = 0, the algorithm
converged in fewer iterations with statement 3.3 included. Again, this

is illustrated in Table 1.
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Our recommendation to use R = 0, include statement 3.3 in the algorithm
and use method A for the scaling scheme. This is the algorithm described

in section II.
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TABLE 1
COMPARISON OF DIFFERENT ADJUSTMENT AND SCALING SCHEMES

Value of Correlation
Coef. After Convergence

Target Target Number of
Value of Statement Scaling Value Value Iterations to
R 3.3 * Scheme = .9999 = ,9000 Convergence
0 W A .9708 .9011 11
0 w/o A 9711 .8975 12
0 W B .9689 .9011 11
0 w/o B .9692 .8975 12
0 W C .9389 .8698 1
0 w/o C .9389 .8698 1
0 W D .9425 .8996 11
0 w/o D .9421 .8990 11
0 W E . 9647 .9011 11
0 w/o E .9635 .8942 12
1 W A L9712 .8790 12
1 w/o A .9703 .8747 11
1 W B .9712 .8790 12
1 w/o B .9703 .8747 . 11
1 VI C .9421 .9133 1
1 w/o C .9421 .9133 1
1 W D .9712 .8790 12
1 w/0 D .9703 .8747 11
1 W E .9712 .8790 12
1 w/o E .9703 .8747 11

* - w indicates that statement 3.3 is included, w/o indicates that it
was excluded.
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IV. Program Description
The description contained herein details how to use the program,
called POSDEF, that implements the algorithm described in section II.
This program has been developed at Sandia Laboratories and a complete

listing of the Fortran computer code is given in Appendix A.

The procedure for the program is basically very simple. The
"approximate correlation matrix" is read into the program. This matrix
is adjusted iteratively until it converges to a positive definite matrix
or until a fixed number of iterations have been evecuted. In the
following, we discussed the limitations on the program, input parameter
card requirements, an explanation of the output, and an example with

selected portions of the output.
A. Limitations on the Program

As the program presently exists, there are several limitations.
However, these are not absolute limitations and can be changed by the

user to suit his/her needs.

The first limitation concerns the upper 1imit on the size of the
correlation matrix that can be read into the program. At present, a
matrix of dimensions less than or equal to 20 x 20 can be accommodated.
In fact, the program expects this matrix to be in symmetric storage

notation. This is explained in the next subsection.

The second limitation concerns the value used for e. Within the

program, this is designated by the variable EIG. The value used for this
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quantity is 0.001. This value can be changed without adversely affecting
the program, but the user should realize that if the value of EIG is
increased, this will increase the number of iterations required for
convergence and cause greater perturbations in the individual elements

of the original matrix.

The third limitation concerns the upper limit on the number of
iterations allowed. The program presently allows a maximum of 20
iterations. If the algorithm does not converge after 20 iterations,
the user should examine the original input "approximate correlation
matrix" very carefully for unlikely configurations of correlation

structure. This is discussed in more detail in section VI.

The fourth limitation concerns the need for the IMSL sub-
routine EIGRS. The program POSDEF begins by decomposing the input
matrix into its unique eigenvalues and eigenvectors. The IMSL sub-
routine will provide these eigenvalues and eigenvectors for an input
matrix that is assumed to be in symmetric storage notation. If the
EIGRS subroutine is not available, then some other subroutine that

computes eigenvalues and eigenvectors should be used in its place.

B. Input - Parameter Cards.

A11 of the following parameter cards are required and must be in
the order given. Also each card must conform to the format given. An

explanation and illustration of each parameter card follows.
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MATRIX SIZE AND OUTPUT CONTROL CARD - Format (2I5).

This card has two integer valued arguments specified as

shown below:

NP IDIAG

where

NP is the dimension of the "approximate correlation matrix"

that is to be read in (NP - a maximum of 20).

IDIAG is an indicator variable that controls the printing of some

of the output. After the last iteration the user may wish to
see an analysis each p x p prime diagonal submatrix. See the

next subsection for further discussion.

0 then this analysis will not be done.

1 then this analysis will be done and printed.

VARIABLE IDENTIFICATION CARD - Format (1615)

This card reads in integer identification numbers that are
associated with the variables that are represented by the
"approximate correlation matrix." For example, suppose we wish
to correlate the third, fourth and seventh variable out of ten
variables being investigated. Then we would wish to label these

variables as "3", "4", and "7" respectively. The following
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example illustrates this and note that a maximum of 20 labels

may be read in.

NK (17) . e . NK (20)
1 ... 5 16 ... 20
NK (1) NK (2) NK(3) | e e NK(16)
1 ...5{6 ... 1011 ... 15 76 ... 80

The only purpose of these identification numbers is to
label the variables in the output. The algorithm does not

depend on these numbers in any way.

"APPROXIMATE CORRELATION MATRIX" CARD - Format (8G10.4)

The program is formated such that this matrix must be in
symmetric storage notation. That is, the symmetric matrix E
is read in as a vector where the first element of the vector is
c(1,1), the second is c{2,1), the third c(2,2), the fourth
c(3,1), etc. As many cards as are necessary may be used as long

as each card is in an 8Gl10.4 format. An example follows.

{//. . . CORX (NKX)

.
s
[

CORX (1) CORX (2) CORX (3)
1 ... 1011 ... 20121 ... 30

where NKX = NP(NP+1)/2. This is the last input-parameter card.
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Explanation of the Qutput.

A complete set of the following information is printed for each and

every iteration.

1.

The iteration number.

The input "approximate correlation matrix."

The eigenvalues and eigenvectors that are computed by the IMSL

subroutine EIGRS. Note that the first row printed is actually

the first column of g (see section II). That is, the first row

printed is Z;”. In general, the jth

row printed is gf‘,

the ith column of Z.

The eigenvalues after the adjustment scheme has been executed
(see sections II and III).

After the eigenvectors and the adjusted eigenvalues are multi-
plied appropriately to reconstruct the "new approximate corre-
lation matrix," 9*, this matrix is printed.

This is followed by two statements indicating that the diagonal

elements of C* are set equal to one. This completes a single

iteration.

This information is printed for each iteration. If the
algorithm converges on the mth iteration; then iteration m + 1
will be begun, but the program will detect that all the eigen-
values are positive. Then the program will indicate that all
the eigenvalues were positive on iteration m + 1. This is

followed by the final positive definite correlation matrix.
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}If IDIAG = 0 (see input - parameter card #1) then the
following information will not be printed. If IDIAG = 1, then
each p x p main diagonal submatrix p = 2, ..., NP is examined
via its eigenvalues, eigenvectors and determinant. This com-

pletes the explanation of the output.
0. An Example with Selected Portions of the Output

In the following example, 16 of 64 different variables were to be
correlated. The modeler provided a collection of pairwise rank corre-
lations, that when taken as a "“correlation matrix" was not positive
definite. The labels for these 16 variables are 4, 8, 12, ..., 64. The
deck set-up for this example is given in section V and the remainder of

this example is best illustrated by the example output that follows.

Figure 1 gives the input "approximate correlation matrix." This

is also the first page of the output of the program.

Figure 2 gives the eigenvalues, eigenvectors and determinant of this
matrix. The eigenvalues after adjustment are also given. This is the

second page of output.

Figure 3 gives the reconstructed "approximate correlation matrix"
using the adjusted eigenvalues. Note that the diagonal elements and at
least one of the off-diagonal elements is greater than one. This is also

the third page of output.

Figure 4 gives the resulting "approximate correlation matrix" that

is the end product of the first iteration. This matrix is also the



-25-

beginning matrix of the second iteration. This is the fourth page of
output from the program.

Figure 5 presents the input matrix to the 12th jteration. Figure
6 presents the eigenvalues and eigenvectors of this matrix; as you can see,
all the eigenvalues are positive and the determinant is positve. There-

fore, the algorithm converged to this matrix after eleven iterations.

Figures 7 and 8 give respectively the eigenvalue/eigenvector anal-
ysis of the 2 x 2 and 3 x 3 prime diagonal submatrices of the matrix
given in Figure 5. This is done for each prime diagonal submatrix as

p = 2’ ...’ 16.

This completes the explanation of this example and illustrated output.



ITERATI ON NUMBER = 1

INPLT

12
16

2v

28

32

36

40

44

A8

32

36

60

64

®RANK CORRELATION STRUCTURE®™ FOR THE RAMDOM VARIABLES BEING TRANSFORMED

VARIABLE NUMBER

4 8 12
1.0000
«9000 1.6000
«6C00 +50C0 t.0000
«7000 7000 5000
«8000 8000 5308
«5000 5000 3000
~+ 9000 ~.8000 -.5000
~« 7000 -.6000 =.4000
~e 5000 -<7600 =-.2000
«2090 .1008 -.1000
<1000 1000 1300
~e 7000 -46000 -+4060
=« 8000 -<88U0 -.6030
« 6000 «6000 4300
« 6L0U0 <6000 .2600

~e 7000 -.6000 ~,2000

le

19000
«5080
«6000

~e %000

-+565000

-+8000
«1000
«1000

-e4000

~«B8000
«809D
«9000

-e5000

2¢

1.0000
«6000
-« 7000
~« 7000
~+8000
«1000
«1000
~¢ 3000
~e8000
«7000
«7000

-~ 6000

24

1.0000
~«4000
~+6000
-«8000
«1000
«1000
~«3000
~«8000
«7000
«7000

~e6000

28

l.0000
«8000
e7600

-«1600

-e3000
«£6000
«8000

~«8000

~e8C00

«7¢00

32 36 40

1.0000 '
«9000 '1.0000
~e3000 -.5000 1.0000
“e3000 -.3000 L6000
#6000 46000 ~,1090
«9000 49000 -.6000
-e8000 =,9000 L6000
~e7008 =49000 <5000

«3000 8000 -.5000

Figure 1

’ Variable
A4 48 32 56 (1) 6{} Identification
Numbers
Input "Approximate Correlation Matrix”
!
N
o

1.0000
~+8000
-«5000
+«6000
«5000
~«5000

1.000

«6000
-~«4000
=~+4000

«8000

Off-diagonal

element very
near one

1.0000

~«9000 1.0000
-« S0 00 1.0000

«7000 <7000 -.6000 1.0000



ANALYSIS CF THt 16 BY 15 PRIME D{AGONAL SUBMATRIX

PERFOAMANCE INDEX = .”2-} Information from Subroutine EIGRS - See the IMSL Manual

1 egative eigenvalues
EIGENVALUES = ",//ﬂbf"' Five neg g

o — —&
Qll‘? ~e2908 =,1623 -+0654 -o00U6) «0756 <1844 2670 <3596 5073 43312 7244 <B197 144530 2.°274 9.5588

VECT. NO. ETGENVECTORS
1 303 2.277E-02 B.596E-02 -.381 -.227 -239 « 377 o119 -e321 ~e372 6266E-02 +2514— First
-e 200 .133 0222 -a261
eigenvector
2 -. 264 ~2.630E-02-2.801€-02 -.213 «109 ~e116 <183 7.864E-0Z o326 1.1986-02 -.499 -+46€ €— second
- 234 «353 © e282 -B.T126~02
3=34 TA4E~02 -+243 -.208 .227 3e605E~-C2 ~o121 -e254 «314 ~5.678E-02 ~o169 A.633E-03 S.0586-02 .
~e 565 «166 -.509 -9.580£-02 .
A .39 ~8.8C0E-92 -4150 ~5.291E-02-6.404E-03 3.348E-02 .200 -.151 -o184 24033E-02~2.5C8£-02 -.211 N
. 246 .53% ~e330 457 etc.
5 113 - 843 . 224 -5.708E~02 6e499€~062-1.874E-02 =o213 832 -e497 .183 -e249 -a253
.192 -.184 o108 3.899E-03
€ o276 -.351 -.215 3.801E-82 199 ~8.296E-02 <145 -e314 8.548E~02-3.933E-02 3.917E-02 -.139
e 404 ~o4S1 «252 o317
1 .299 -e376 -9.489E-02 106 «500 S.201E-02 <164 «153 382 ~8.3856~02 186 .131
. 284 134 €.187E-02 -.381
8 -.a01 .125 9.053€-02 6.'82E-82 <582 -e839 . 274 ~e112 -a364 ~7.14%€-0: o143 ~4.850E-02
6o 428E-02-5.238€-02 -.14S 5.743E-02
9-4s 27902 =4 356 .163 «379 -.319 - 455 -.111 ~o481 24294€-04-4.980E-02 -o217 9.742E-82
. 157 . 145 8.327E-02 -.204
10 -.296 -a314 9.81 % -02 -.446 137 176 ~e 455 -226 ~8.730E-03 -.384 «192 o114
3.180£-02 .221 .125 .189
11-1.776£-02 -.219 432 -.293 S.873E-02 .31) . 247 -.318 -1.510€-02 301 -a155 9.761£-02
-a213 119 o853 -e226
12 .26l .181 -e193 -.389 «234 o426 -.377 ~6.9176-02 8.1T1E~02 .410 -e216 .328
“8.136E-03 1.177E-22-2.499€-02-4.00TE=0 )
13-104726-03 4.042E-02 ~+603 -e147 1.301€-C2 <179 -4.5326-02 =262 -e251 -.241 -e228 ~e209
. 219 -.229 -e129 ~.822
1 .219 «106 257 -.227 o128 ~e324 -a19¢ ~1e750E-02 234 -e137 . 359 “eSTA
S.589£-02 -.188 -e266 -.151
12 -.257 -e26% -e336 ~.147 -.23% -7.355€-02 4123 ~94039E-02-9. TTEE-02 333 «524 -.108
<4 1T0E-02 169 «135 -.158
16 =266 -e299 ~e159 -a253 -.258 -e227 «269 .281 *293 ~e127 o140 .214
e 318 ~e293 -e284 «267

Note that none of these five eigenvalues are
Adjusted °19°?v°1“°' ’/,‘//’ less than .001. Therefore they aro unchanged.

40156 21888 2670 #3996 .5')73, 03312 <7244 8197 144320 Z.0274 92,9588

ODETERPINANT = =4.586E-09

EIGENVALUES AFTER ADJUSTMENT

(«001) L0C10 010

BT

Figure 2

..LZ_



RESULTING PRODUCT MATRIX AFT
MININUM EIGENVALUE USED =

1.0688
«90141
«565105
«66€D
«1629
«%807

~e8602

-e6970

-+5698
01542
«1432

-« 6386

~e8021
«5025
66U 34

-«7108

«9041
1.0109
+35114
+689¢
e 1956
«3033
~=7887
-e6114
~e7019
«1029
e18%6
=e35947
-«7795
«5891
«6222

~e6403

«6105
«5114
leslde
<4797
4897
«2969
-- 48080
~«4073
-e2101
-e1067
«1064
~e3873
-+5865
«3898
«2296

~=2086

«6660
«6894
<4797
1.0816
«6302
» 6402
~e4807
-+6115
-e7713
«1513
«1214
~«40380
~e7695
«7615

«8324

«7629
«7956
«4897
6332
10249
«6180
-.TSiO

~e70867

- e7599

«1342
«0783
~e3388
~«7883
«6993

<6841

ER VHE iIRST

«4807
«5033
«2969
«6402
«6180
1.03090
~+4387
~e6219
-« 7787
<1396
«1105
-«3105
~eT1567
«6728

«6792

“e5618 -~ <5810 -.5703

AFTER THE ABOVE PRODUCT MATRIX IS FORREDs

THE RESULTING "RANK

10 EIGENVALUES HAVE

EIG* =+ €
~eB8602 -.6970 -.5698
~e7887 -+6114 -.7019
~o4800 =.4073 -.2101
~e4BUT7 -,6115 =-,7713
“e7310 -+7067 <7599
~«4380 =-26210 ~.T7787
140817 <8076 46676

e3076 10256 8703
«6676 <8902 10766
~el500 -43267 -. 4485
~e3174 ~43079 -« 3551
«6094 <6062 #5247
«7768 8513 9117
~eT7602 -e7823 -48920
~eT358 -.7062 -.8976
«6679 8766 8189

BEEN TESTED AND ADJUSTED WHERE NECESSARY.

1542 L1452
#1029 1046
~e1067 +1064
1513  .1214
«1342 L0783
+1396 41105
-e1500 =¢3174
~e3267 =43079
~e4485 -43551
1.0618 .5884
#5884 140742
~.18419 =,7251
-S54 80 -,4734
#5769 5511
«4804 .ATDS
-e8600 =,4947

THE DIAGONAL ELEMENTS ARE SET EQUAL

CORRELATION MATRIX® IS GIVEN AT THE BEGINNING OF ThE NEXT

~e6386 -.8021

~e5947 -.775S

~eJBTI -e5865

-o8080 -,7695

~23380 ~-.7883

-e3105 -.7567

6L 384 ,LT7€8

«€062 8518 =

<5247 .9117

~e1419 -,5480
~e7251 ~o41734
1.0929 5986
«5986 1.0559
~e4402 ~-.9439
-<4095 -.8970

«1796 <7462

TO 1.00

ITERATICN.

«J858
«1615
«69¢5
«6728
~e76€2
7823
-«8920
«57€9
«5511
~o 4402

-« 9429

1.0672

«6034
06222
«229¢
«8324
« 6841
«€792
-« 1358
~e17062
- 897€
«4804
« 4705
-24093
-« 8970
1.01123

l1.0872

-+ 7108
-+6003
-« 2085
-+ 5618
~«3810
~e 5703
«€679
«8766
«8189
~e 4600
~e45a7
«1796
e 7462
-« 7086

-+ 6304

-e7086 -.6304 @

Note diagonal

elements
greater than

one,

New Approximate

Corre

Note this off—dxagonal element
greater than one.

Figure 3

ation Matrix.

|
N
[oo]
|



INPLY

12

16

i

24

28

32

Jé

40

44

.8

52

56

64

64

Beginning of Second Iteration

®RANK CORRELATION STRUCTURE®™ FOR THE RANDCN VARIABLES BEING TRANSFORMED

4

1. 6000
« 9081
«6105
° 666C
« 7629
-« 4807
~e 8602
~e 6970
-« 5638
«1542
-« 1452
-« 6386
-+ 8021
« 6625
« 6034

-« 7108

8

1404290

«35114s

«689%

«795¢€

«5033

~«78817

~e6114

~«7019

«1029

el546

~e5347

~e1795

«5891

«6222

~e6003

VARIABLE NUMBER

12

10000

« 4797

« 4837

«2969

-+ 4300

- <4073

~e2101

-+1367

«1064

~e 2873

-« 35865

« 3398

«2296

~«2086

16

1.J000
«6302
« 6402
~e4807
~26115
-e7713
«1513
e121s
~e4080
~e 7695
«7615
«8324

~«5618

20

1.0000
«6180
- 7310
“e7087
-e7599
«1342
«3783
-« 3380
-. 7883
« 6995
«5841

-5810

24

1.0000
~+4380
-e6210
~e7787
«1396
«1105
-e310535
-e7567
+6728
«6792

~«5703

28

140000
«BUTE
«6676

~e1500

~eJ174
«6094
7768
~eT€02
-e7358

«6679

32

1.0000

«8903

~e3267

-e3079

26062

«8515

-«7823

~e7062

«8766

36 AC
1.0000
~e4485 1.0000

~«3551 5884
»5247 -.1419
«9117 -.5480

~e8920 +5769

-+8976 <4804

«8189 =-,4600

Figure 4

44

l1.0000
- 7251
~«AT734
«5511
<4709

~e4947

A8 32 56 60 64
Diagonal elements
has been set equal
1.06080 to one.
«35986 1.0G00
~e8402 ~09439 1.0000

-e4095 -+ 8970 1.0000

¢1796 7462/ ~47886 -+6304 1.0000

Off-diagonal element is

still greater than one.



ITERATI ON NUMBER =

(=)

Beginning of the 12th Iteration

INPLT “RANX CORRELATION STRUCTURE® FOR THE RANDOM VARIABLES BEING TRANSFORMED

L}

8
12
16
29
29
28
32
36
49
44
a8
52
56
&0

64

L]

1. 0000
<9011
e6143
«6335
e 7533
«4780
-« BAAS
-e 6972
-e 6042
« 1452
« 1590
-+ 6251
-e 7834
e 6151
o 5964

~+ 7018

VARIABLE NUMBER

12

1.0000

«5115
« 6882
1944
«5084%
- T779
~e6295
-.6828
«1814
el146
~«5849
-« 7650
«5954%
«6270

~«6030

1.8300
«4708
«4891
«3009

-+4783

-e4(61

- 2230

-«0973
«1047

- 3889

~¢ 5555
«3742
«2551

-s2108

16

1.0830

«6359

« 6499

-«3106

-eb116

~«7638

«1610

«1352

-e3993

-e 7783

«7497

-8002

-+ 5570

20

1.0000
«6216
-2 7381
-e7073
-« 7308
01427
<0711
-« 3483
-e 7847
» 6982
<6842

'05780

24

1.0000
-s4467
-e6281
-.71756
«1529
«1158
-+3111
-eT7276
«6689
«6756

-e5633

28

1.0000
7956
6711

-e1€52

~e3238
.6066
7159

--7356

-aT124

06667

32

1.3300
«8698
-e3285
-«3186
5997
«8343
-«7839
-sT134%

«8717

36

1.,0000
~e4468
~e3653

«35136

-8881
~e8866
-e8902

8125

40

1.0000

«5807

~e1554

-e5082

«5688

«4855

-e4501

Figure 5

44

1.0000
-+6857
~«4656
«3317
e 4540

-o4960

48 52 56
1.0000
«5895 10000
~e4647 -4 9375 1.0000

«1690

The off-diagonal element has been

reduced from .9999 to

(1]

.9708.

64

7698 -e €325 ~«€457 1.0000

_OE_



ANALYSIS OF YHE 16 BY 15 PRIME DIAGOMAL SUBMATRIX
PERFORMA NCE INDEX = 4135

ETGENVAL VES =

«Q0UY 20025 0U05 L3006 L0008 L0009 1372 1981 22962 .ACA42 L4393 L6395 <7689 1.34%) 1.9416 9.8499} All eigenvalues

VECT. NO. EIGENVECTORS are positive.
1-5+ 483E-62 -.124 ~.213 ~3.478E~D2~4.010€-8Z -.178 4. 849E-02 6.806E-0Z .101 -e231 «TeS17E-02~1.408E-03
-.902 =74 064 ~02-8.456E ~02-2.391E~N2
2 24315€-02 .127 ~1e563E-02 =.248 ~7.8462E~C2~9.049€-02 <269 o113 2.96€€-02 -4153 -.220 -e134
5.506E-02 826 -.187 ~e110
3 .126 ~9.783E-02 o266 -4397 -4125 -.166 o132 264 ~e %16 -e127 -e 143 2.072E-02
~Se 753E~02 -.183 544 -e239
¢ .33 -.318 -3.995E-02 .100 ~3.9260~02~8,225€~02 ~.180 .24 e 637 Z4025E~-02 T.1T0E-02 B.613E-03
30 5T3E=03 5.504E~02 ~o 465 «231
5 .04 .202 ~8.860E-02-9.3336-02 -.122 ~2.201E-02 .366 -e352 ~2.876E~02 ~.270 463 <460
1.538E-03~2.323E-03-2.180E-02 7.605£~02
& 320 -a288 -.150 -9.5926-02 o131 3.4B81E-03 284 -.308 60 73€E-02 116 -.198 ~ed5E
~B.601E~-04-2.14TE-02 <239 «538
7 .39 -a51% -9,8126-02 .151 «370 4.889E-02 3.9156-02 .267 378 ~2.865E-02 105 9. TATE=02
. 111 T.794E~32 8.728E-02 -.372
8 360 ~2.247€-02-6.588E-02 -.116 -.660 Y XY ~a351 9.200E-02 249 5.259E-02 -.153 74396E-02
~6e 11%E~02 S.873E€-02 117 3.731E-02
9 3.380E~02 .3253 -o132 -e809 «349 496 115 «455 2.6J4E-02 $.642E-02 o217 -9.317€-02
~-e 1085 -.325 =~9.931E-02 156
10 ~.250 -4195 -el10 ~o271 -150 -3.8416E-,3 ~.512 ~6432E~02-80090E-03 ~o4€S - 259 S.855E-02
Be 2T2E-02 .236 .288 o384
11 -.1c01 - 374 «397 ~ed61 .128 279 “1.943E-22 -,441 S.629E-03 o147 ~e183 .163
-.108 ~1.890£-02 -4310 -.199
12 .2%6 .223 -2223 -316 -259 ~.488 -.335 ~2.648E-02 7.869€-02 o417 - 206 317
-4, 8520-03 1.893€-82 3,290€-03 3.288E-02
13-1.503E~02-6.456E-22 4627 «164 ~1eTSTE~02 ~al? 7.128E-02 .260 .20S »256 .22 «20%
~e 19 .226 0131 0422
1% -.218 -.108 ~e279 .226 .136 351 «193 1.3626-02 ~.23% .128 -o 364 «55€
-4, 9626~02 o177 252 «149
15 -.251 -e269 -e349 o142 -.239 ~7.282E-02 118 “1.469€-02 ~.101 .53a -515 -elUs
-8, 184E-02 o167 .133 -e166
16 -. 266 ~a261 ~s160 -.2%2 -.268 ~e229 .269 «283 .292 -e137 ~e139 e213
« 311 ~e291 ~e282 «268

OETERPINANT =
-——

Note, the determinant is positive.

Figure 6

_‘[E_



ANALYSIS OF THE 2 BY 2 PRIME DIAGONAL SUBMATRIX
PERFORMANCE INDEX = 132
EIGENVAL UES =

«03989 11,9011

VECT. NO. EIGENVECTORS
1 -«707 «T07
2 - 707 -«707

DETERNINANT = «188

Figure 7

...ZE_



ANALYSIS OF THE 3 8Y

PERFORMA NCE INODEX =
EIGENVALUES =
«0895 <5446 2.3659

VECTe. NO.

1 ~-.740 «650

2 -« 256 - 433

J 622 «599
DETERMINANT = 115

3 PPIME DIAGONAL SUBMATRIX

« 255

EIGENVECTORS

+128
«854

«504

Figure 8

_Eg_



-34-
V. Deck Setup for POSDEF
Following we give.an example of how to set up the cards for use in
running POSDEF. The first 10 cards are the usual job card, account card,
and other control cards. This is followed by the Fortran program which
is followed by the data (a listing of the program is given in Appendix

A).
DECK SETUP FOR POSDEF

YPO,T5, STSSZ.
USER,NAMEXXX,PASWORD.
CHARGE,0188000.

FTN,R=2.
PFGET,SUBZ,0LDLIB,AU=ELFROST.
PFGET, IMSL,FXIMSL ,AU=MATHLIB.
LIBRARY,SUBZ, IMSL.
LDSET,PRESET=NGINDEF.
LGO,PL=10000.

EXIT.

EXIT.

(END OF RECORD -- MULTI-PUNCH 789 IN COL 1)

PROGRAM POSDEF GOES HERE

(END OF RECORD -~ MULTI-PUNCH 789 IN COL 1)
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[DATA AND INPUT-PARAMETER CARDS GOVHERE]
(END OF RECORD -- MULTI-PUNCH 789 IN COL 1)
(END OF INFORMATION -- MULTI-PUNCH 6789 IN COL 1)

This completes the information needed to run POSDEF. An example
of the data that was used in the example in section IV is given in Figure

9.



Card

==
o

O O~ WA

16

[
OO0 OOOOOOO
L] L]

8

.00
.50
.50

.70
.80
.10
.10

.60
.60
.50
.70
.00
.70
.70
.80

12

16
0.90
1.00
0.30

-0.70
-0.60
-0.80
0.10
0.10
1.00
0.60
-0.80
0.60
-0.80
0.60
-0.90
-0.60
-0.50

20

24
1.00
0.80
0.60

-0.40
0.80
0.70
0.10
0.10

-0.70
0.60

-0.80
1.00

-0.80
0.60
0.50

-0.20

-0.50

Input-Parameter Cards

28

O~ L OO0
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Figure 9

32
.60

.60
.00
.00
.90

0.10

.10
.60
.10
.80
.60
.90
.20
.50
.60
.80

36

40
0.50
0.50
1.00
0.70
0.50
1.00
-0.30

0.10

-0.80
0.80
0.60
0.60
0.90

-0.40

-0.60
0.70

44

48
1.00
0.60

-0.90
-0.60
-0.70
0.20
-0.50
-0.30
-0.40
1.00
0.90
0.40
0.60
0.70
-0.90
-0.60
-0.70

52

56
0.70
1.00

-0.80
-0.40
-0.20
0.10
1.00
-0.30
-0.30
-0.80
0.90
0.80
-0.40
0.70
.9999
0.70
-0.60

60

64
0.70
0.50

-0.50
-0.60
-0.80
-0.10
0.10
-0.30
-0.30
-0.80
-0.60
0.70
-0.90
-0.80
1.00
0.90
1.00
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VI. Discussion

The user should recall that the input "approximate correlation matrix"
can be ill-conditioned. These types of matrices frequently occur when
a modeler places positive ones on the diagonal elements and then assigns
correlations to the pairwise configurations of variables. While it is
impossible to construct a negative definite matrix in this way, this
matrix will have only a few negative eigenvalues. These wi]] be small
in absolute value (very near zero), provided this matrix is not ill-condi-
tioned (i.e. one or more negative eigenvalues that are relatively large in

absolute value such as -1, -2 or -3).

Recall that we have no guarantee that this algorithm will converge
in such ill-conditioned cases, but we have never failed to see it con-
verge. However, the final correlation matrix may be quite different
from the original "approximate correlation matrix." We illustrate some

of these principles with the following example.

Figure 10 gives the input "approximate rank correlation matrix" for
19 variables, labeled as indicated. As can be seen, the modeler indicates
that variable numbers 1 through 11 are independent of each other. Also
variable numbers 22 and 23 are each correlated negatively with each of
variables 1-11. The indicated value of this correlation coefficient is
-0.7. Finally the modeler indicates that variables 22 and 23 are indepen-

dent.
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A careful examination of these relationships will show that such
an arrangement is essentially impossihle. Consider the three hypothetical
variables Xy, X2 and X3. Suppose (Xj, X2) = -0.7 and furthermore
suppose (X1, X3) = -.8. Then it is obvious that (X2, X3) > 0;

that is variables X2 and X3 will have a strong positive correlation.

This matrix is ill-conditioned. There is only one negative eigen-
value but its value is -2.3571. However, the algorithm did converge
after eight iterations. But it is not surprising that the values of
the original matrix have been altered quite a bit. For example, the
correlation value -0.7 becomes -0.4033; the zero correlation between
variables 22 and 23 becomes 0.6451; and the zero correlations assigned
to variables 1-11 all become 0.1214 (see Figure 11). This may or
may not be acceptable to the modeler, but does indicate that care should
be taken in the construction of the original "approximate correlation
matrix." This simply illustrates that a collection of pairwise corre-
lation coefficients does not make a correlation matrix. A multivariate

distribution is much more complicated than this.



ITERATICN NUMBER = 1

INPUT

1C
11
22
23
24
2%
26

217

28

29

®RANK CCRRELATION STRUCTURE®™ FOR THE RANCOM VARIABLES BEING TRANSFORMED

VARIABLE NUMBER

1 2 3
28 29

1.0000
0.0000 1.0000
0.0000 6.0000 1.0000
Ge0000 0.0000 0.0000
0.0000 0.0000 04,0000
0. 0000 0.0000 0.0000
7.0600 0.C3C0 0.,0000
0.C000 0.0000 0.0000
0.0000 0.0000 0.0000
00000 0.0000 0.0000
Ue0000 0.0000 0.0000
~a7000 -.7000 ~.7000
~«7C00 =47000 =-47000
0.0000 0.0000 0.0000
0.0Mr0C 0.C000 0.0000
00000 0.C290 G.0003
., 0000 C.0000 0.,0000
0.0000 C.0000 0.00CO
1.000¢C

00000 0.,UCCY 0.0000
«700s 143000

L}

1.0300

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

=.7000

=7000

0.n000

0.0000

0.0000

0.G000

0.0000

0.0000

1.00177
0.90 00
0.000¢€
0.0090
0.0008
0.000n
0.0) 00
~+7000
-« 7200
0,00 080
0.0% 09
0.0008

0.0007

0.00 00

0.00 00

14330¢
0.0002
0.0000
0.0000
0.0000
0.000¢C
-«T7000
-«7000
0.J000
0.,0000
0.3000

0.0000

040000

0.0000

1.0000
0.0000
0.0000
0.0000
0.0600
~«7000
~«7000
0.0000
0.0000
00000

0.0000

0.0002

0.0000

1.0000
0.0000
0.0000
0.0000
-+7000
~+7000
0.,000C
0.0000
0.0000

0.,0000

0.0000

0.0000

11

22 23 24 25 26

Note the zero correlations.

1.0000

0.0000 1.0u00
0.,0000 0.0000
-¢7000 -,7000
-e70300 =-.7000
0.0000 0.,0000
0.0000 0.0000
0.0000 0.0000

0.0000 0.0000
0.0000 0.0000

0.0000 0.0000

Figure 10

1.0009
-+ 7000
~+7000
0.0000
0.0000
0.0000

0.0000

0.,0000

0.0000

Note this zero

1.0000

0.0000}1.0000

«7000 0.0000 1.0000

coefficient,

00000 .7000 0.,0000 1.0000
0.0000 0,0000 0,0000 0.0000 1.0000

0.0000 0,0000 0.0000 0.,0000 7000

0.0000 0,0000 0,0000 08,0000 0.,0000

040000 040000 0,0000 0.,0000 0,0000

27

...6{.—

correlation

1.0000

000000

0.,0000



ITERATICN NUMBER =
42 Algorithm converged on the 9th iteration.

INPUT “RANX CORRELATION STRUCTURE® FOR THE RANCOM VARIABLES BEING TRANSFORMED

VARIARLE NUMBER

1 2 3 A 5 6 7 8 9 10 11 22 23 24 25 26 27
2R 23

1 1.0000

2 +1214 1,0000

30 412184 L1218 1.0007

A L1214 .]214  .1214 1.0000 ALL of these values
5 o121 1218 L1214 L1214 1.nootkzz,/”’l_ff””“——___— were initially zero.
6 1214 L1214 L1218 .1214 .1214 1.0000

7 21218 <1218 L1214 <1214 51214 L1214 1.0000

8 +1214 <1218 L1214 1214 <1214 L1214 L1214 1,0000

9 .1218% +121% L1214 L1214 L1214 L1214 L1214 ,121% 1.0000 These were initially

.L
10 <1214 <1214 L1214 L1214 1214 L1214 <1214 1214 .1214 1.0000 set 'equal to -0.7. <
11 21218 61214 L1214 L1214 12184 L1214 1214 L1214 L1214 L1214 1.0000
22 =a8033 =o48033 =o84033 =03033 =0o4033 =0%033 =24033 =04033 ~=,3033 -+4033 1.0000 Was initially set
23 =o8033 =o4033 =o4033 =e8033 =a4033 -28033 =o4033 ~o4033 ~,4033 -.4033 -,4033 equal to zero'.
24 ~o0602 =oL602 =40602 ~e0602 ~40602 =40602 ~40602 =,0602 =,0602 -o0602 =.0602 +5013 -.0952 1.0000 '
25 -e0602 -40602 =-,0632 -e0602 -,0602 -,0602 -.0602 =,0602 -.0602 -40602 -,0602 ~40952 5013 -.0029 1.0000
26 00000 0.0003 0.,00C0 0,0000 0,0000 0,000 0,0000 0,9000 00,0000 00,0000 0.0000 0.,0000 00000 0.0000 0.0000 1.0000 These
27 Go0000 0,9000 0,0000 0.0000 0,000% 0.,0000 0,0000 0,0000 09000 0.0000 0.0000 0.0000 0.0000 040000 00000 7000 :1.0000 variables
are

28 00000 0,0000 0.00060 0.0000 0,0000 0.,3000 0.0000 0,0000 0,0000 00000 08,0000 00000 00000 00000 0,0000 0,0000 0,0000

1.0000 unchanged.
29 C.0000 0.0000 0.,0000 0.,C000 0,0009 0.0000 0.0000 0,0000 U.3000 0.,0000 0.0000 0.0000 0.0000 C.0000 0.0000 0,0000 0.0000 -

« 7000 1.C000

Figure 11
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APPENDIX A. Listing of the Fortran Source Deck for the POSDEF Program.
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OO0

OO0

10

20

30
40

50

60

70
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PROGRAM POSDEF ( INPUT,OUTPUT,PUNCH,TAPES)
DIMENSION CORX(210), NK(20), D(20), Z(20,20), WK(210), CORZ(210)

NN = THE DIMENSIONS OF Z, I.E. Z(NN,NN).
DATA NN/20/

EIG = THE VALUE THAT THE NEGATIVE EIGENVALUES ARE SET EQUAL T0.
DATA EIG/0.001/

MAXIMUM NUMBER OF ITERATIONS ALLOWED.

ITEST=1

READ 110, NP,IDIAG

READ 120, (NK(I},I=1,NP)
NKX=NP*(NP+1)/2

READ 130, (CORX(1),I=1,NKX)
PRINT 140

IF (ITEST.GT.M) GO TO 20
GO TO 30

IF (IDIAG.EQ.0) GO TO 100
PRINT 150

GO TO 40

PRINT 160, ITEST

PRINT 170

PRINT 180

PRINT 190, (NK(I),I=1,NP)
I1=1

IK=1

DO 50 I=1,NP

PRINT 200, NK(1),(CORX(J),d=11,IK)
11=1K+1

IK=IK+1+1

CONTINUE

IL=NP

IF (ITEST.EQ.M1) IL=2

DO 80 K=IL,NP

CALL EIGRS (CORX,K,2,D,Z,NN,WK,IER)
PRINT 210, K,K

PRINT 220, WK(1)

PRINT 230, (D(I),1=1,K)
PRINT 240

DO 60 J=1,K

PRINT 250, J,(Z(1,J),1=1,K)
DET=1.0

DO 70 J=1,K

DET=DET*D(J)



OO0
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PRINT 260, DET
80 CONTINUE
IF (ITEST.GE.M1) GO TO 100
CALL FINDIT (NP,D,Z,CORZ,ITEST,M,EIG)
ITEST=ITEST+]
DO 90 I=1,NKX
90 CORX(I)=CORZ(1)
GO T0 10
100 CONTINUE
CALL EXIT

110 FORMAT (215)

120 FORMAT (1615)

130 FORMAT (8G10.4)

140 FORMAT (1H1)

150 FORMAT (76HO AFTER THE LAST ITEPATION, WE EXAMINE EACH P BY P PRIM
1€ DIAGONAL SUBMATRIX.)

160 FORMAT (21HO ITERATION NUMBER = ,I5)

170 FORMAT (////,1X,77HINPUT "RANK CORRELATION STRUCTURE" FOR THE RAND
10M VARIABLES BEING TRANSFORMED,//)

180 FORMAT (20X,15HVARIABLE NUMBER,/)

190 FORMAT (6X,1717,/,8X,1717,/,8X,1717)

200 FORMAT (1HO,15,17(F7.4),/,7X,17(F7.4),/,17(F7.4))

210 FORMAT (16HIANALYSIS OF THE,I3,3H BY,I3,25H PRIME DIAGONAL SUBMATR
11X)

220 FORMAT (1HO,19HPERFORMANCE INDEX =,1PG10.3)

230 FORMAT (14HOEIGENVALUES =,/,1H0,17(F7.4),/,17(F7.4))

240 FORMAT (11HOVECT. NO. ,20X,12HEIGENVECTORS,/)

250 FORMAT (1HO,15,12(1PG10.3),/,6X,12(1PG10.3))

260 FORMAT (15HODETERMINANT = ,1PG10.3)
END

SUBROUTINE FINDIT (NP,D,Z,CORZ,ITEST,M,EIG)
DIMENSION D(1), Z(20,1), CORZ(1), X(20,20), T(20,20)
NEV=0
DO 10 I=1,NP
IF (D(I).LT.0.0) NEV=NEV+l

10 CONTINUE
IF (NEV.EQ.0) GO TO 40

EIGENYALUE ADJUSTMENT SCHEME

D0 20 I=1,NEV
D(1)=E1G
20 CONTINUE
L1=NEV+1
L2=NEV+NEV
DO 30 I=L1,L2
IF (D(I).LT.EIG) D(I)=EIG



OO0

30

40
50

60

70

80

90
100

110

120
130

140 FORMAT (31HOEIGENVALUES AFTER ADJUSTMENT =,/,1H0,17(F7.4),/,17(F7.
14))
150 FORMAT (56H1 ALL THE EIGENVALUES WERE POSITIVE ON ITERATION NUMBER

CONTINUE
END OF SCHEMEt

PRINT 140, (D(1),I=1,NP)
GO TO 60

PRINT 150, ITEST

IF (ITEST.EQ.1) GO TO 60
CONTINUE

ITEST=M

GO TO 130

CONTINUE
DO 70 J=

[Py S N - 3

XN Care O N RN

lew )

[an]

(Vo)

o
n >
A~ N e

CONTINUE

PRINT 170
NE2=NEV*2

PRINT 160, NE2,EIG
DO 110 I=1,NP
PRINT 180, (X(I,J),J=1,NP)
CALL SCALEIT (NP,X)
KI1=0

DO 120 I=1,NP

D0 120 J=1,I
KI=K1+1
CORZ(KI)=X(I,J)

IF (ITEST.EQ.1.AND.NEV.EQ.0) GO TO 50

RETURN

1,I5,2H .,/)

160 FORMAT (42HORESULTING PRODUCT MATRIX AFTER THE FIRST ,15,59H EIGEN
1VALUES HAVE BEEN TESTED AND ADJUSTED WHERE NECESSARY.,/,1X,26HMINI

-47-

2MUM EIGENVALUE USED = ,G12.4,/)

170

FORMAT (1H1)

180 FORMAT (1HO,17(F7.4),/,17(F7.4))

END
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SUBROUTINE SCALEIT(NP,X)
DIMENSION X(20,1)
D0 10 I=1,NP

10 X(I,1)=1.0
PRINT 20
PRINT 30
RETURN

c

20 FORMAT (//,1X,87HAFTER THE ABOVE PRODUCT MATRIX IS FORMED, THE DIA
1GONAL ELEMENTS ARE SET EQUAL TO 1.00 .)

30 FORMAT (/,1X,88HTHE RESULTING "RANK CORRELATION MATRIX" IS GIVEN A
1T THE BEGINNING OF THE NEXT ITERATION.)
END
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